CBSE Class 9 (Maths) - Polynomials - Exercise 2.4

Factor Theorem


1. Let p(x) be a polynomial and a be any real number. If p(a) = 0, then (x–a) is a factor of p(x).

2. If (x–a) is a factor of p(x), then p(a) = 0

EXERCISE 2.4 (NCERT Solution)

Q1: Determine which of the following polynomials has (x + 1) a factor :
(i) x3 + x2 + x + 1
(ii) x4 + x3 + x2 + x + 1
(iii) x4 + 3x3 + 3x2 + x + 1
(iv) x3 – x2 – (2 + √2)x + √2

Answer: If (x+1) is a factor of a polynomial p(x), then p(-1) must be equal to zero.



(i) Let p(x) = x3 + x2 + x + 1
    p(-1) = (-1)3 + (-1)2 + (-1) + 1  = -1 + 1 -1 + 1 = 0
∴ (x-1) is a factor of polynomial x3 + x2 + x + 1

(ii)  Let p(x) = x4 + x3 + x2 + x + 1
       p(-1) =  (-1)4 + (-1)3 + (-1)2 + (-1) + 1 = 1 - 1 + 1 -1 + 1 = 1 ≠ 0
∴ (x-1) is not a factor of this polynomial.

(iii) Let p(x) =  x4 + 3x3 + 3x2 + x + 1
       p(-1) = (-1)4 + 3(-1)3 + 3(-1)2 + (-1) + 1
                = 1 + 3(-1) + 3(1) -1 + 1 = 1 - 3 + 3 - 1 = 1 ≠ 0
∴ (x-1) is not a factor of this polynomial.

(iv) Let p(x) = x3 – x2 – (2 + √2)x + √2
       p(-1) = (-1)3 – (-1)2 – (2 + √2)(-1) + √2
                = -1  - 1 + 2 +  √2 + √2 =  2√2  ≠ 0
∴ (x-1) is not a factor of this polynomial.


Q2. Use the Factor Theorem to determine whether g(x) is a factor of p(x) in each of the following cases:
(i)  p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1

(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2

(iii) p(x) = x3 – 4x2 + x + 6, g(x) = x – 3


Answer:
(i)  p(x) = 2x3 + x2 – 2x – 1, g(x) = x + 1
Zero of x+1 is -1. If g(x) is a factor of p(x) then p(-1) = 0
⇒ p(-1) =  2(-1)3 + (-1)2 – 2(-1) – 1  = -2 + 1 + 2 - 1 = 0
∴ g(x) is a factor of  polynomial p(x).


(ii) p(x) = x3 + 3x2 + 3x + 1, g(x) = x + 2
Zero of x + 2 is -2. If g(x) is a factor of p(x) then p(-2) = 0
⇒ p(-2)  = (-2)3 + 3(-2)2 + 3(-2) + 1  = -8 + 12 - 6 + 1 = -1 ≠ 0
∴ g(x) is not a factor of  polynomial p(x).

(iii)  p(x) = x3 – 4x2 + x + 6, g(x) = x – 3
Root of x-2 is 3.  If g(x) is a factor of p(x) then p(3) = 0
⇒ p(3) = (3)3 – 4(3)2 + 3 + 6  = 27 - 4(9) + 3 + 6 = 27 - 36  + 3 + 6 = 0
∴ g(x) is a factor of  polynomial p(x).


Q3: Find the value of k, if x – 1 is a factor of p(x) in each of the following cases:
(i) p(x) = x2 + x + k

(ii) p(x) = 2x2 + kx + √2

(iii) p(x) = kx2 – √2x + 1

(iv) p(x) = kx2 – 3x + k


Answer:
According to factor theorem, if x -1 is a factor of p(x), then p(1) = 0.
(i) p(x) = x2 + x + k
⇒  p(1) = (1)2 + 1 + k = 0
⇒  1 + 1 + k = 0
⇒ k = -2

(ii) p(x) = 2x2 + kx + √2
⇒  p(1) = 0
⇒  p(1) = 2(1)2 + k(1) + √2 = 0
⇒  2 + k + √2 = 0
⇒ k = -2 - √2  = -(2 +√2)

(iii) p(x) = kx2 – √2x + 1
⇒  p(1) = 0
⇒  p(1) = k(1)2 – √2(1) + 1 = 0
⇒ k - √2 + 1
⇒  k = √2 - 1

(iv) p(x) = kx2 – 3x + k
⇒  p(1) = 0
⇒  p(1) = k(1)2 – 3(1) + k = 0
⇒   k - 3 + k = 0
⇒ 2k = 3
⇒ k = 3/2

Q4. Factorise:
(i) 12x2 – 7x + 1
(ii) 2x2 + 7x + 3
(iii) 6x2 + 5x – 6
(iv) 3x2 – x – 4


Answer:
(i) 12x2 – 7x + 1 
Method I: By splitting method, let us find out two number p and q such that pq = 12 × 1
and p + q = -7
i.e. p = -4  and q = -3
⇒  = 12x2 – 4x -3x + 1
     =  4x(3x - 1) - 1(3x -1)
     =  (4x -1)(3x -1)                              ...(answer)

Method II:  By factor theorem.




















(ii) 2x2 + 7x + 3
Let us find out two number p and q such that pq = 2 × 3 = 6 and p + q = 7
i.e. p = 6 and q = 1
⇒ = 2x2 + 6x + x + 3 
    = 2x (x + 3) + 1(x + 3)
    = (2x + 1)(x + 3)                                    ... answer


(iii) 6x2 + 5x – 6
Let us find out two number p and q such that pq = 6 × -6 = -36 and p + q = 5
i.e. p = 9 and q = -4
∴  6x2 + 5x – 6 = 6x2 + 9x -4x – 6 
    = 3x(2x + 3) - 2(2x + 3)
     = (2x + 3)(3x - 2)                                          ... answer



(iv) 3x2 – x – 4
Let us find out two number p and q such that pq = 3 × -4 = -12 and p + q = -1
i.e. p = 3 and q = -4
∴ 3x2 – x – 4 = 3x2 + 3x –4x – 4
   = 3x(x + 1) -4(x+1)
   = (x+1)(3x - 4)                                                  ... answer


Q5. Factorise:
(i) x3 – 2x2 – x + 2
(ii) x3 – 3x2  – 9x – 5
(iii) x3 + 13x2 + 32x + 20
(iv) 2y3 + y2 – 2y – 1

Answer:
(i) Let p(x) = x3 – 2x2 – x + 2
Here constant term is 2.  Possible factors of 2 are: ±1, ±2

By trial method, p(2) =  (2)3 – 2(2)2 – 2 + 2 = 8 - 8 - 2 + 2 = 0
∴ (x -2 ) is factor of p(x).

P(x) ÷ (x -2) =
            x2 - 1 
           ▁▁▁▁▁▁▁▁▁▁▁▁▁
     x -2 ) x3 – 2x2 – x + 2
            x3 - 2x3 
             -   +
           ▔▔▔▔▔▔▔▔ 
                    -x + 2 
                    -x + 2
                     +  -
                   ▔▔▔▔▔
                      0

Since, Dividend = Divisor × Quotient + Remainder
∴ x3 – 2x2 – x + 2 = (x-2)(x2 – 1) + 0
  = (x - 2)( x2 -x + x– 1)
  = (x -2) [x(x-1) + 1 (x-1)]
  = (x - 2) (x-1)(x+1)

(ii) Let f(x) = x3 – 3x2  – 9x – 5
Here constant is 5, Possible factors of 5 are ±1 and ±5
By trial method, p(5) =  (5)3 – 3(5)2  – 9(5) – 5 = 125 - 75 - 45 - 5 = 0
∴ (x - 5) is factor of polynomial f(x).
Let us find out quotient = f(x) ÷ (x -5)
 
             x2 + 2x + 1
           ▁▁▁▁▁▁▁▁▁▁
     x - 5) x3 – 3x2  – 9x – 5
             x3 - 5x2 
            -   +
            ▔▔▔▔▔▔
             0 + 2x2 - 9x - 5
                 2x2 - 10x 
                 -   +
                 ▔▔▔▔▔▔▔▔
                        x - 5
                        x - 5
                       ▔▔▔▔▔
                          0
 

Since, Dividend = Divisor × Quotient + Remainder
∴ x3 – 3x2  – 9x – 5 = (x - 5)(x+ 2x + 1)
Applying splitting method,
  = (x -5)( x+ x + x + 1)
  = (x -5)[x(x+1) +1(x+1)]
 = (x-5)(x+1)(x+1)
 = (x-5)(x+1)2 

Method II:
x3 – 3x2  – 9x – 5 = x3 – 5x2 + 2x2  – 9x – 5  
= x2 (x – 5) + 2x2  – 10x + x – 5 
=  x2 (x – 5) + 2x(x - 5) + 1 (x -5)
= (x - 5)( x2 + 2x + 1)
= (x -5)[x(x+1) +1(x+1)]
 = (x-5)(x+1)(x+1)
 = (x-5)(x+1)2 

(iii) Let p(x) = x3 + 13x2 + 32x + 20
 Here constant term is 20. Its factors are: ±1, ±2, ±4, ±5 etc. 
 By trial method, p(-2) = (-2)3 + 13(-2)2 + 32(-2) + 20
    = -8 + 52 -64 + 20 = 0
 ∴ x + 2 is a factor of polynomial p(x).
⇒ x3 + 13x2 + 32x + 20 = x3 + 2x2 + 11x2+ 22x + 10x + 20
   =   x2(x + 2) + 11x(x + 2) + 10(x+2)
 Taking (x + 2) common, we get
   = (x + 2)( x2+ 11x + 10)
(Note: you can use long division method also).

  = (x + 2)(x2+ x + 10x + 10)
  = (x+2)[x(x+1) + 10(x+1)]
  = (x+2)(x+10)(x+1)

(iv) Let p(y) = 2y3 + y2 – 2y – 1
Here the constant term is 1. Possible factors are: ±1
By trial method, p(1) = 2(1)3 + (1)2 – 2(1) – 1 = 2 + 1 - 2 - 1 = 0
So (y-1) is a factor of p(y)

Quotient = p(y) ÷ (y-1)
           2y2 + 3y + 1
         _____________________
  y -1  ) 2y3 + y2 – 2y – 1
           2y3 -2y2
          -    +
          ▔▔▔▔▔▔▔▔▔▔▔▔
               3y2 - 2y - 1
               3y2 - 3y 
                -    +
             ▔▔▔▔▔▔▔▔▔▔▔▔
                     y  - 1
                     y  - 1
                    -   +
             ▔▔▔▔▔▔▔▔▔▔▔▔
                           0
Since, Dividend = Divisor × Quotient + Remainder
2y3 + y2 – 2y – 1 = (y -1)(2y2 + 3y + 1)
= (y-1)(2y2 + 2y + y + 1)
= (y-1)(2y(y+1) + 1(y + 1)
= (y-1)(y+1)(2y + 1)


Criterion to check if (x - 1) is a factor of polynomial p(x) = ax3 + bx2 + cx + d, where a,b,c,d ∈ R, a≠0

Applying remainder theorem, if (x - 1) is factor of p(x) then p(1) = 0.
⇒ p(x) = ax3 + bx2 + cx + d
⇒ p(1) = a(1)3 + b(1)2 + c(1) + d = 0
⇒  a + b + c + d = 0
We can say that,
❝(x - 1) is a factor of polynomial p(x), if the sum of all the coefficients of polynomial p(x) is zero.❞
(✏ By by applying similar logic, can you find criterion to check if (x + 1) is a factor?)

Q6:Check if the polynomial 5x4 - 4x3 - 2x + 1 has (x - 1) its factor.

Answer: Adding the co-efficients i.e. 5 + (-4) + (-2) + 1 = 6 - 6 = 0
⇒ (x - 1) is a factor of the given polynomial.





No comments:

Post a Comment